Search results

1 – 10 of 52
Article
Publication date: 1 December 2002

Y. Mutoh, J. Zhao, Y. Miyashita and C. Kanchanomai

Fatigue crack growth (FCG) tests on lead‐containing solders and lead‐free solders have been carried out at frequencies ranging from 0.01 to 10 Hz and stress ratios in the range…

1329

Abstract

Fatigue crack growth (FCG) tests on lead‐containing solders and lead‐free solders have been carried out at frequencies ranging from 0.01 to 10 Hz and stress ratios in the range 0.1–0.7. The FCG resistance of lead‐free solders was found to be superior to that of lead‐containing solders. For both types of solder, cycle dependent behaviour is dominant for the tests at low stress ratios and high frequencies, while time‐dependent effects become important at high stress ratios and low frequencies. For cycle dependent testing conditions, cracks primarily propagated in a transgranular manner, while a mixed trans/intergranular mode of crack propagation was observed for testing conditions where time dependent effects were dominant. The propagation path of intergranular cracks depended on the test materials, and along interfaces. After the FCG tests, the formation of small grains was observed.

Details

Soldering & Surface Mount Technology, vol. 14 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 December 2002

C. Kanchanomai, Y. Miyashita, Y. Mutoh and S.L. Mannan

Low cycle fatigue tests on as‐cast Sn–Ag eutectic solder (96.5Sn–3.5Ag) were carried out using a non‐contact strain controlled system at 20°C with different frequencies (10−3

Abstract

Low cycle fatigue tests on as‐cast Sn–Ag eutectic solder (96.5Sn–3.5Ag) were carried out using a non‐contact strain controlled system at 20°C with different frequencies (10−3–1 Hz). Steps at the boundaries of Sn‐dendrites were found to be the initiation sites for microcracks in the case of low frequency fatigue tests, while for high frequency tests, cracks predominantly initiated at the boundaries of subgrains formed within Sn‐dendrites. The link up of these cracks and the propagation of cracks inside the specimen occurred both transgranularly through Sn–Ag eutectic phases, and intergranularly along Sn‐dendrite boundaries and/or subgrain boundaries. Propagation of stage II cracks for various frequencies could be characterized by the C*‐parameter.

Details

Soldering & Surface Mount Technology, vol. 14 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Content available
Article
Publication date: 1 December 2003

153

Abstract

Details

Soldering & Surface Mount Technology, vol. 15 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 7 April 2015

Jibing Chen, Yanfang Yin, Jianping Ye and Yiping Wu

The purpose of this paper is to investigate the thermal fatigue behavior of a single Sn-3.0Ag-0.5Cu (SAC) lead-free and 63Sn-37Pb (SnPb) solder joint treated by rapidly…

Abstract

Purpose

The purpose of this paper is to investigate the thermal fatigue behavior of a single Sn-3.0Ag-0.5Cu (SAC) lead-free and 63Sn-37Pb (SnPb) solder joint treated by rapidly alternating heating and cooling cycles.

Design/methodology/approach

With the application of electromagnetic-induced heating, the specimen was heated and cooled, controlled with a system that uses a fuzzy logic algorithm. The microstructure and morphology of the interface between the solder ball and Cu substrate was observed using scanning electron microscopy. The intermetallic compounds and the solder bump surface were analyzed by energy-dispersive X-ray spectroscopy and X-ray diffraction, respectively.

Findings

The experimental results showed that rapid thermal cycling had an evident influence on the surface and interfacial microstructure of a single solder joint. The experiment revealed that microcracks originate and propagate on the superficial oxide of the solder bump after rapid thermal cycling.

Originality/value

Analysis, based on finite element modeling and metal thermal fatigue mechanism, determined that the rimous cracks can be explained by the heat deformation theory and the function of temperature distribution in materials physics.

Details

Soldering & Surface Mount Technology, vol. 27 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 4 December 2018

Mustafa Öcal and Recep Sadeler

The purpose of this study is to describe the environmentally assisted cracking (EAC) of AISI 316L stainless steel as bare and coated cases in several corrosion environments. The…

169

Abstract

Purpose

The purpose of this study is to describe the environmentally assisted cracking (EAC) of AISI 316L stainless steel as bare and coated cases in several corrosion environments. The main purpose of this study is to extend the lifespan of 316L material under corrosive fatigue in sodium chloride environments.

Design/methodology/approach

Fatigue tests carried out by using a Schenk type plane bending fatigue machine made by Tokyokoki Co. A scanning electron microscope (SEM) was used to observe the fracture surfaces and tested specimen surfaces. The micro-Vickers hardness of specimens was measured by using a PC-controlled Buehler–Omnimet tester.

Findings

Under reciprocating bending condition (R = −1) the behavior of 316L SS bare samples and 316L SS coated with Al-5%Mg samples were investigated comparatively at room temperature in ambient air and in several corrosion solutions. The results obtained from the data showed that Al-5Mg coating procedure significantly stabilized the 316L SS even in the most aggressive environment 5 per cent NaCl solution as compared with bare samples.

Originality/value

Al-5Mg coating showed a stable structure under the corrosion liquids used in the experiments. The coating material served as a stable barrier between the base material and the corrosion fluid, thus ensuring a tightness even in long-term tests below the endurance limit.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 February 2016

Tamás Garami, Oliver Krammer, Gábor Harsányi and Péter Martinek

– This paper aims to develop a method to measure the length of cracks inside solder joints, which enables the validation of computed tomography (CT) crack length measurements.

Abstract

Purpose

This paper aims to develop a method to measure the length of cracks inside solder joints, which enables the validation of computed tomography (CT) crack length measurements.

Design/methodology/approach

Cracks were formed inside solder joints intentionally by aging solder joints of 0603 size resistors with thermal shock (TS) test (−40 to +140°C, 2,000 cycles), and CT images were captured about them with different rotational increment (1/4, 1/2 and 1°) of sample projection. The length of cracks was also measured with our method, which is based on capturing high-resolution radiography X-ray images about the cracks in two perpendicular projection planes. The radiography results were compared to the CT measurements. The percentage error for the different CT rotational increment settings was calculated, and the optimal CT settings have been determined.

Findings

The results have proven that reducing the rotational increment increases the sharpness of the captured images and the accuracy of crack length measurements. Nevertheless, the accuracy compared to high-resolution radiography measurements is only slightly better at 1/4° rotational increment than in the case of 1/2° rotational increment. It should be also noted that the 1/4° increment requires twice as much time for capturing the images as the 1/2° increment. So, the 1/2° rotational increment of sample projection is the optimal setting in our investigated case for measuring crack lengths.

Practical implications

The developed method is applicable to find the optimal settings for CT crack length measurements, which provides faster analysation of large quantity samples used, e.g. at life-time tests.

Originality/value

There is a lack of information in the literature regarding the optimisation of CT measurement set-up, e.g. a slightly larger value of the sample rotational increment can provide acceptable resolution with much faster processing time. Thus, the authors developed a method and performed research about optimising CT measurement parameters.

Details

Soldering & Surface Mount Technology, vol. 28 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 28 October 2019

Isam Tareq Abdullah, Sabah Khammass Hussein and Abbas Khammas Hussein

The purpose of this paper is to join aluminium alloy AA6061 with polyvinyl chloride (PVC) sheets using the friction spot technique.

Abstract

Purpose

The purpose of this paper is to join aluminium alloy AA6061 with polyvinyl chloride (PVC) sheets using the friction spot technique.

Design/methodology/approach

The AA6061 specimen was drilled with a semi-conical hole and put over the PVC specimen with a lap configuration. A friction spot technique was used to generate the required heat to melt and extrude the PVC through the aluminium hole. In this study, three process parameters were used: time, plunging depth and rotating speed of the tool. Thermal finite element model was built to analyse the process temperature. Effect of the process parameters on the joint shear strength and temperature was analysed using the design of experiments method. The microstructure investigation of the joint cross section was examined.

Findings

The input heat melted and extruded the polymer into the aluminium hole with the aid of tool pressure. A mechanical interlock was observed at the interface line between the polymer and aluminium. The scattered aluminium fragments into the molten polymer increased the shear strength of the joint. The hole diameter exhibited the highest effect on the joint strength compared with the other parameters. Specimen of minimum hole diameter recorded the maximum shear strength of 224 MPa. The proposed model gave a good agreement with the experimental data.

Originality/value

For the first time, the PVC was joined with AA6061 by the hot extrusion using the friction spot technique. The shear strength of joint reached 7.5 times of the base material (PVC).

Details

International Journal of Structural Integrity, vol. 11 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 October 2019

Muhammad Aamir, Riaz Muhammad, Majid Tolouei-Rad, Khaled Giasin and Vadim V. Silberschmidt

The research on lead-free solder alloys has increased in past decades due to awareness of the environmental impact of lead contents in soldering alloys. This has led to the…

Abstract

Purpose

The research on lead-free solder alloys has increased in past decades due to awareness of the environmental impact of lead contents in soldering alloys. This has led to the introduction and development of different grades of lead-free solder alloys in the global market. Tin-silver-copper is a lead-free alloy which has been acknowledged by different consortia as a good alternative to conventional tin-lead alloy. The purpose of this paper is to provide comprehensive knowledge about the tin-silver-copper series.

Design/methodology/approach

The approach of this study reviews the microstructure and some other properties of tin-silver-copper series after the addition of indium, titanium, iron, zinc, zirconium, bismuth, nickel, antimony, gallium, aluminium, cerium, lanthanum, yttrium, erbium, praseodymium, neodymium, ytterbium, nanoparticles of nickel, cobalt, silicon carbide, aluminium oxide, zinc oxide, titanium dioxide, cerium oxide, zirconium oxide and titanium diboride, as well as carbon nanotubes, nickel-coated carbon nanotubes, single-walled carbon nanotubes and graphene-nano-sheets.

Findings

The current paper presents a comprehensive review of the tin-silver-copper solder series with possible solutions for improving their microstructure, melting point, mechanical properties and wettability through the addition of different elements/nanoparticles and other materials.

Originality/value

This paper summarises the useful findings of the tin-silver-copper series comprehensively. This information will assist in future work for the design and development of novel lead-free solder alloys.

Details

Soldering & Surface Mount Technology, vol. 32 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 17 April 2007

N. Barry, I.P. Jones, T. Hirst, I.M. Fox and J. Robins

The research aims to explore the high‐cycle fatigue performance of Pb‐free alloys and compare them to Sn‐Pb. In doing this, it also aims to demonstrate the viability of a new…

Abstract

Purpose

The research aims to explore the high‐cycle fatigue performance of Pb‐free alloys and compare them to Sn‐Pb. In doing this, it also aims to demonstrate the viability of a new testing method.

Design/methodology/approach

The method introduced uses existing test equipment in a novel way to combine the speed and applicability of general vibration testing with the control of single, model specimen testing. Model solder joints are constructed in a repeatable manner and repeated tensile stress cycles are applied until failure.

Findings

It is found that in the regime studied, all of the Pb‐free alloys tested show significantly decreased performance compared to Sn‐Pb, at ambient temperatures. No obvious mechanical or microstructural features have been identified as the cause of this discrepancy. The test method employed demonstrates good correlation with existing fatigue test methods despite the known variance of solder mechanical test results.

Research limitations/implications

It is recognised that results pertaining to essentially only a one‐dimensional stress state are obtained, and that practical stresses will vary. The performance difference between Pb and Pb‐free alloys warrants further investigation.

Originality/value

The results obtained are of interest to high‐reliability electronics sectors such as aerospace, defence and automotive, where vibrations in service are encountered. Very little work exists on the subject of solder high‐cycle fatigue performance and to the author's knowledge none comparing Pb to Pb‐free alloys in an objective manner.

Details

Soldering & Surface Mount Technology, vol. 19 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 April 2006

Peng Sun, Cristina Andersson, Xicheng Wei, Zhaonian Cheng, Dongkai Shangguan and Johan Liu

To determine the Coffin‐Manson (CM) equation constants for fatigue life estimation of Sn‐8Zn‐3Bi solder joints, since Sn‐8Zn‐3Bi solder has a melting temperature of around 199°C…

Abstract

Purpose

To determine the Coffin‐Manson (CM) equation constants for fatigue life estimation of Sn‐8Zn‐3Bi solder joints, since Sn‐8Zn‐3Bi solder has a melting temperature of around 199°C which is close to that of the conventional Sn‐Pb solder which has previously been used in the electronics assembly industry.

Design/methodology/approach

Three dimensional finite element (FE) simulation analysis was used for comparison with the experimentally measured data and to determine the CM constants. Low cycle fatigue tests and FE simulations were carried out for these lead‐free solder joints, and eutectic Sn‐37Pb solder was used as a reference.

Findings

The CM equation for Sn‐8Zn‐3Bi solder joints was fitted to the lifetimes measured and the shear strains simulated. The constants were determined to be 0.0294 for C, the proportional constant, and for the fatigue exponent, β, −2.833.

Originality/value

The CM equation can now be used to predict the reliability of Sn‐8Zn‐3Bi solder joints in electronics assembly and the knowledge base for the properties of the Sn‐Zn solder system has been increased.

Details

Soldering & Surface Mount Technology, vol. 18 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 52